早前写了一篇关于A*算法的文章:《》
最近在写个js的UI框架,顺便实现了一个js版本的A*算法,与之前不同的是,该A*算法是个双向A*。
双向A*有什么好处呢?
我们知道,A*的时间复杂度是和节点数量以及起始点难度呈幂函数正相关的。
这个http://qiao.github.io/PathFinding.js/visual/该网址很好的演示了双向A*的效果,我们来看一看。
绿色表示起点,红色表示终点,灰色是墙面。稍浅的两种绿色分别代表open节点和close节点:
当路径通过狭窄通道时,如果起点离通道较近,则很容易找到了终点,把起点和终点交换一下,如图:
可以注意到,被查找的节点多了不止一倍。
我们可以认为,终点在狭窄地带是最差结果,在开阔地带是最优结果。再来看看双向A*算法的寻址:
可以看到,和单向的最优结果是很接近的。
观察浅绿色寻路节点我们可以注意到,当open节点第一次接触到之后,中止了查找。
根据该思路,实现算法如下:
while (true) { minFNode = anra.AStarUtil.findMinNode(openList); openList.removeObject(minFNode); if (!closedList.contains(minFNode)) closedList.push(minFNode); if (closedList.length > 500) { return; } if (minFNode == null || minFNode.equals(endNode)) break; anra.AStarUtil.search(this, minFNode, openList, closedList, endNode); BIminFNode = anra.AStarUtil.findMinNode(BIopenList); BIopenList.removeObject(BIminFNode); if (!BIclosedList.contains(BIminFNode)) BIclosedList.push(BIminFNode); if (BIclosedList.length > 500) { return; } if (BIminFNode == null || BIminFNode.equals(startNode)) break; anra.AStarUtil.search(this, BIminFNode, BIopenList, BIclosedList, startNode); for (var i = 0; i < openList.length; i++) { for (var j = 0; j < BIopenList.length; j++) { if (BIopenList[j].equals(openList[i])) { BIminFNode = BIopenList[j]; minFNode = openList[i]; middleNode = minFNode; break; } } if (middleNode) break; } if (middleNode) break; }
findMinNode:function (openList) { if (openList.length == 0) return null; else if (openList.length == 1) return openList[0]; openList.sort(function (a, b) { return a.f() - b.f(); }); return openList[0]; }, /*搜索*/ search:function (router, node, openList, closedList, endNode) { var nodes = this.findAroundNode(router, node); if (nodes == null) return; for (var i = 0; i < 8; i++) { if (nodes[i] == null || nodes[i].level == null)continue; nodes[i].g = (i > 3 ? nodes[i].level[0] : nodes[i].level[1]) + node.g; nodes[i].h = this.caculateH(nodes[i], endNode); if (closedList.contains(nodes[i])) { continue; } if (!openList.contains(nodes[i])) { openList.push(nodes[i]); nodes[i].parent = node; } else { var idx = openList.indexOf(nodes[i]); var n = openList[idx]; if (nodes[i].g < n.g) { openList.remove(idx); closedList.push(n); nodes[i].parent = n.parent; openList.splice(idx, 0, nodes[i]); } } } }, /*查找指定节点周围的可用节点*/ findAroundNode:function (router, node) { if (node == null)return null; var nodes = []; nodes[0] = ANodeFactory.create(router, node.i, node.j + 1); nodes[1] = ANodeFactory.create(router, node.i, node.j - 1); nodes[2] = ANodeFactory.create(router, node.i + 1, node.j); nodes[3] = ANodeFactory.create(router, node.i - 1, node.j); nodes[4] = ANodeFactory.create(router, node.i - 1, node.j + 1); nodes[5] = ANodeFactory.create(router, node.i + 1, node.j - 1); nodes[6] = ANodeFactory.create(router, node.i + 1, node.j + 1); nodes[7] = ANodeFactory.create(router, node.i - 1, node.j - 1); return nodes; }, caculateH:function (p, endNode) { return (Math.abs(endNode.i - p.i) + Math.abs(endNode.j - p.j)) * p.level[0]; },